Definitions used in Cohn's Measure Theory (second edition)

Gustaf Bjurstam
bjurstam@kth.se

1 Measures

Definition 1.1 (Algebra). Let X be a set, an arbitrary collection of subsets \mathscr{A} of X is an algebra on X if
(a) $X \in \mathscr{A}$,
(b) if $A \in \mathscr{A}$ then $A^{c} \in \mathscr{A}$,
(c) for each finite sequence $\left\{A_{n}\right\}_{n=1}^{N}$ of sets in \mathscr{A}, the set $\bigcup_{n=1}^{N} A_{n}$ belongs to \mathscr{A}, and
(d) for each finite sequence $\left\{A_{n}\right\}_{n=1}^{N}$ of sets in \mathscr{A}, the set $\bigcap_{n=1}^{N} A_{n}$ belongs to \mathscr{A}.

Definition $1.2(\sigma$-Algebra). Let X be a set, an arbitrary collection of subsets \mathscr{A} of X is a σ-algebra on X if
(a) $X \in \mathscr{A}$,
(b) if $A \in \mathscr{A}$ then $A^{c} \in \mathscr{A}$,
(c) for each infinite sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of sets in \mathscr{A}, the set $\bigcup_{n=1}^{\infty} A_{n}$ belongs to \mathscr{A}, and
(d) for each infinite sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of sets in \mathscr{A}, the set $\bigcap_{n=1}^{\infty} A_{n}$ belongs to \mathscr{A}.

Definition 1.3 (Borel σ-algebra on \mathbb{R}^{d}). The Borel σ-algebra on \mathbb{R}^{d}, denoted $\mathscr{B}\left(\mathbb{R}^{d}\right)$, is generated by the collection of open subsets of \mathbb{R}^{d}. Proposition 1.1.5 states that $\mathscr{B}\left(\mathbb{R}^{d}\right)$ is generated by each of the collections of sets
(a) the collection of all closed subsets of \mathbb{R}^{d};
(b) the collection of all closed half-spaces in \mathbb{R}^{d} that have the form $\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i} \leq b\right\}$ for some $b \in \mathbb{R}$;
(c) the collection of all rectangles in \mathbb{R}^{d} that have the form

$$
\left\{\left(x_{1}, \ldots, x_{d}\right): a_{i}<x_{i} \leq b_{i} \text { for } i=1, \ldots, d\right\}
$$

Definition 1.4 (Measure). Let \mathscr{A} be a σ-algebra. A function $\mu: \mathscr{A} \rightarrow[0, \infty]$ is called countably additive if

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

for each infinite sequence of disjoint sets $\left\{A_{n}\right\}_{n=1}^{\infty}$ in \mathscr{A}. If μ in addition to being countably additive also satisfies $\mu(\varnothing)=0, \mu$ is said to be a measure on \mathscr{A}.

Definition 1.5 (Measure space). Let X be a set, \mathscr{A} a σ-algebra on X and μ a measure on \mathscr{A}. The triplet (X, \mathscr{A}, μ) is then called a measure space, the pair (X, \mathscr{A}) is often called a measurable space.

Definition 1.6 (Outer measure). Let X be a set, and let $\mathscr{P}(X)$ be the power set of X. An outer measure on X is a function $\mu^{*}: \mathscr{P}(X) \rightarrow[0, \infty]$ such that
(a) $\mu^{*}(\varnothing)=0$,
(b) $A \subseteq B \subseteq X$ implies $\mu^{*}(A) \leq \mu^{*}(B)$, and
(c) if $\left\{A_{n}\right\}$ is an infinite sequence of sets in $\mathscr{P}(X)$, then $\mu^{*}\left(\bigcup A_{n}\right) \leq \sum \mu^{*}\left(A_{n}\right)$.

Definition 1.7 (Lebesgue outer measure). Lebesgue outer measure on \mathbb{R}^{d} which we denote by λ^{*} is defined as follows. For each set $A \subseteq \mathbb{R}^{d}$ define the set \mathscr{C}_{A} of all sequences $\left\{R_{n}\right\}$ of bounded and open d-cells R_{n} such that $A \subseteq \bigcup_{n=1}^{\infty} R_{n}$. Then

$$
\lambda^{*}(A)=\inf \left\{\sum_{n=1}^{\infty} \operatorname{vol}\left(R_{n}\right):\left\{R_{n}\right\} \in \mathscr{C}_{A}\right\} .
$$

Definition $1.8\left(\mu^{*}\right.$-measurable set). Let X be a set, and let μ^{*} be an outer measure on X. A subset B of X is μ^{*}-measurable if

$$
\mu^{*}(A)=\mu^{*}(A \cap B)+\mu^{*}\left(A \cap B^{c}\right),
$$

for all $A \subseteq X$.
Definition 1.9 (Complete measure). Let (X, \mathscr{A}, μ) be a measure space. The measure μ, or the measure space (X, \mathscr{A}, μ), is called complete if $A \in \mathscr{A}, \mu(A)=0$, and $B \subseteq A$ implies $B \in \mathscr{A}$.

Definition 1.10 (μ-negligible set). A subset B of X is called μ-negligible or μ-null if there exists $A \in \mathscr{A}$ such that $\mu(A)=0$ and $B \subseteq A$. Thus (X, \mathscr{A}, μ) is complete if and only if every μ-negligible set belongs to \mathscr{A}.

Definition 1.11 (Completion of a σ-algebra under a measure). Let (X, \mathscr{A}) be a measurable space. The completion of \mathscr{A} under μ is the collection \mathscr{A}_{μ} of $A \subseteq X$ for which there exists $E, F \in \mathscr{A}$ such that

$$
E \subseteq A \subseteq F,
$$

and

$$
\mu(F \backslash E)=0
$$

A set that belongs to \mathscr{A}_{μ} is sometimes said to be μ-measurable.
Definition 1.12 (Completion of a measure). Let (X, \mathscr{A}, μ) be a measure space. The completion of μ is defined as $\bar{\mu}: \mathscr{A}_{\mu} \rightarrow[0, \infty]$ by letting $\bar{\mu}(A)$ be the common value of E, F, defined in the above definition.

Definition 1.13 (Inner and outer measure). Let (X, \mathscr{A}, μ) be a measure space, and let A be an arbitrary subset of X. The inner measure μ_{*} of A is defined by

$$
\mu_{*}(A)=\sup \{\mu(B): B \subseteq A \text { and } B \in \mathscr{A}\}
$$

The outer measure μ^{*} of A meanwhile, is defined by

$$
\mu^{*}(A)=\inf \{\mu(B): A \subseteq B \text { and } B \in \mathscr{A}\}
$$

Remark. According to Proposition 1.5.4, the outer measure defined in Definition 1.13 satisfies the conditions placed on an outer measure in Definition 1.6.

Definition 1.14 (Regular measure). Let \mathscr{A} be a σ-algebra on \mathbb{R}^{d} that includes $\mathscr{B}\left(\mathbb{R}^{d}\right)$. A measure μ on \mathscr{A} is regular if
(a) each compact subset K of \mathbb{R}^{d} satisfies $\mu(K)<\infty$,
(b) each set A in \mathscr{A} satisfies

$$
\mu(A)=\inf \{\mu(U): U \text { is open and } A \subseteq U\}, \text { and }
$$

(c) each open subset U of \mathbb{R}^{d} satisfies

$$
\mu(U)=\sup \{\mu(K): K \text { is compact and } K \subseteq A\}
$$

Definition 1.15 (Dykin class). Let X be a set. A collection \mathscr{D} is a d-system, or Dykin class, on X if
(a) $X \in \mathscr{D}$,
(b) $A \backslash B \in \mathscr{D}$ whenever $A, B \in \mathscr{D}$ and $A \supseteq B$, and
(c) $\bigcup A_{n} \in \mathscr{D}$ whenever $\left\{A_{n}\right\}$ is an increasing sequence of sets in \mathscr{D}.

Definition 1.16 (π-system). A collection of subsets of X is a π-system if it is closed under the formation of finite unions.

2 Functions and Integrals

Definition $2.1(\mathscr{A}$-measurable function). Let (X, \mathscr{A}) be a measurable space, and let $A \in \mathscr{A}$. A function $f: A \rightarrow[-\infty, \infty]$ is measurable with respect to \mathscr{A} if it satisfies any of the conditions, and thus all, of the conditions in Proposition 2.1.1. That is any of
(a) $\forall t \in \mathbb{R} \quad\{x \in A: f(x) \leq t\} \in \mathscr{A}$,
(b) $\forall t \in \mathbb{R} \quad\{x \in A: f(x)<t\} \in \mathscr{A}$,
(c) $\forall t \in \mathbb{R} \quad\{x \in A: f(x) \geq t\} \in \mathscr{A}$,
(d) $\forall t \in \mathbb{R} \quad\{x \in A: f(x)>t\} \in \mathscr{A}$.

A function that is measurable with respect to \mathscr{A} may be called \mathscr{A}-measurable or if what σ-algebra is meant is obvious from context, simply measurable. In the case $X=\mathbb{R}^{d}$ functions measurable with respect to $\mathscr{B}\left(\mathbb{R}^{d}\right)$ are called Borel measurable or Borel functions. A function measurable with respect to $\mathscr{M}_{\lambda^{*}}$ is called Lebesgue measurable.

Definition 2.2 (Almost everywhere). Let (X, \mathscr{A}, μ) be a measure space. A property of points on X is said to hold μ-almost everywhere if the set of points in X where it fails to hold is μ-negligible. The expression μ-almost everywhere is often abbreviated μ-a.e. or to a.e. [μ]. If the measure is clear from context one may simply say almost everywhere.

2.1 Construction of the integral

Definition 2.3 (Integral of a simple non-negative function). Let μ be a measure on (X, \mathscr{A}). If f is a real-valued, simple, \mathscr{A}-measurable function given by $f=\sum_{i=1}^{m} a_{i} \chi_{A_{i}}$, where each $a_{i} \geq 0$ and $A_{i} \in \mathscr{A}$ are disjoint. Then the integral of f with respect to μ is then defined to be

$$
\int f d \mu=\sum_{n=1}^{m} a_{i} \mu\left(A_{i}\right)
$$

Definition 2.4 (Integral of arbitrary \mathscr{A}-measurable, non-negative function). Let f be an arbitrary \mathscr{A}-measurable function, with image in $[0, \infty]$. The integral of f is then defined as

$$
\int f d \mu=\sup \left\{\int g d \mu: g \in \mathscr{S}_{+} \text {and } g \leq f\right\} .
$$

Definition 2.5 (Integral of arbitrary measurable function). Let $f: X \rightarrow[-\infty, \infty]$ be a measurable function on (X, \mathscr{A}, μ). If $\int f^{+} d \mu$ and $\int f^{-} d \mu$ are both finite, then f is called integrable and its integral is defined by

$$
\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu
$$

The integral of f is said to exist if at least one of $\int f^{+} d \mu$ and $\int f^{-} d \mu$ is finite, in this case the integral is defined $\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu$.

Definition 2.6 (Integral over a subset). Let (X, \mathscr{A}, μ) be a measure space, and let $f: X \rightarrow$ $[-\infty, \infty]$ be \mathscr{A}-measurable. The integral of f over a subset $A \subseteq X$ is said to exist if the integral of $f \chi_{A}$ exists. In that case the integral over A is defined to be

$$
\int_{A} f d \mu=\int f \chi_{A} d \mu
$$

Likewise, if $A \in \mathscr{A}$ and $f: A \rightarrow[-\infty, \infty]$ is \mathscr{A}-measurable, then the integral of f over A is defined to be the integral of the function which agrees with f on A and vanishes on A^{c}.

Definition 2.7 (Lebesgue integral). The case $X=\mathbb{R}^{d}$ and $\mu=\lambda$ we simply talk about Lebesgue integrability and the Lebesgue integral. We may use any of the following notations for the Lebesgue integral over an interval $[a, b]$

$$
\int_{a}^{b} f=\int_{a}^{b} f(x) d x=(L) \int_{a}^{b} f=(L) \int_{a}^{b} f(x) d x
$$

where the latter two are used to emphasise that we are talking about the Lebesgue integral.
Definition $2.8\left(\mathscr{L}^{1}\right)$. We define $\mathscr{L}^{1}(X, \mathscr{A}, \mu, \mathbb{R})$, or sometimes simply \mathscr{L}^{1}, as the set of all integrable functions $f: X \rightarrow \mathbb{R}$. (As opposed to $[-\infty, \infty]$-valued functions.)

2.2 Measurable functions again

Definition 2.9 (Measurable function between sets). Let (X, \mathscr{A}) and (Y, \mathscr{B}) be measurable spaces. A function $f: X \rightarrow Y$ is measurable with respect to \mathscr{A} and \mathscr{B} if for each $B \in \mathscr{B}$ the set $f^{-1}(B)$ belongs to \mathscr{A}. In stead of saying measurable with respect to \mathscr{A} and \mathscr{B}, we may say that f is a measurable function from (X, \mathscr{A}) to (Y, \mathscr{B}), or simply that $f:(X, \mathscr{A}) \rightarrow(Y, \mathscr{B})$ is measurable.

Definition 2.10 (Integral of complex-valued function). Let (X, \mathscr{A}, μ) be a measure space. A complex-valued function f on X is integrable if its real and imaginary parts $\Re(f)$ and $\Im(f)$ are integrable; if f is integrable then its integral is defined by

$$
\int f d \mu=\int \Re(f) d \mu+i \int \Im(f) d \mu
$$

Definition $2.11\left(\mu f^{-1}\right)$. Let (X, \mathscr{A}, μ) be a measure space, let (Y, \mathscr{B}) be a measurable space, and let $f:(X, \mathscr{A}) \rightarrow(Y, \mathscr{B})$ be measurable.Define $\mu f^{-1}: \mathscr{B} \rightarrow[0, \infty]$ by $\mu f^{-1}(B)=$ $\mu\left(f^{-1}(B)\right)$. It is easy to show that μf^{-1} is a measure, this measure is sometimes called the image of μ under f.

3 Convergence

Definition 3.1 (Convergence in measure). Let (X, \mathscr{A}, μ) be a measure space, and let f and f_{1}, f_{2}, \ldots be real valued \mathscr{A}-measurable functions on X . The sequence $\left\{f_{n}\right\}$ converges to f in measure if

$$
\lim _{n} \mu\left(\left\{x \in X:\left|f_{n}(x)-f_{n}\right|>\varepsilon\right\}\right)=0
$$

for every $\varepsilon>0$.
Definition 3.2 (Almost uniform convergence). Let (X, \mathscr{A}, μ) be a measure space, and let f and f_{1}, f_{2}, \ldots be real valued \mathscr{A}-measurable functions on X . Then $\left\{f_{n}\right\}$ converges to f almost uniformly if for all $\varepsilon>0$ there is $B \in \mathscr{A}$ such that $\left\{f_{n}\right\}$ converges to f on B and $\mu\left(B^{c}\right)<\varepsilon$.

Definition 3.3 (Convergence in mean). Let (X, \mathscr{A}, μ) be a measure space, and let f and f_{1}, f_{2}, \ldots be real valued \mathscr{A}-measurable functions on X . Then $\left\{f_{n}\right\}$ converges to f in mean if

$$
\lim _{n} \int\left|f_{n}-f\right| d \mu=0
$$

3.1 Normed spaces

Definition 3.4 (Norm \& seminorm). Let V be a vector space over \mathbb{C}. A norm on V is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ that satisfies
(a) $\|v\| \geq 0$,
(b) $\|v\|=0 \Longleftrightarrow v=0$,
(c) $\|\alpha v\|=|\alpha|\|v\|$,
(d) $\|u+v\| \leq\|u\|+\|v\|$
for each $u, v \in V$ and $\alpha \in \mathbb{C}$. If condition (b) was replaced by " $\|v\|=0 \Longleftarrow v=0 "\|\cdot\|$ is a seminorm.

Definition 3.5 (Metric \& semimetric). A metric on a set S is a function $d: S \times S \rightarrow \mathbb{R}$ that satisfies
(a) $d(s, t) \geq 0$,
(b) $d(s, t)=0 \Longleftrightarrow s=t$,
(c) $d(s, t)=d(t, s)$,
(d) $d(r, t) \leq d(r, s)+d(s, t)$
for all $r, s, t \in S$. If condition (b) is replaced by $" d(s, t)=0 \Longleftarrow s=t$ " d is a semimetric. A metric space is a set S together with a metric d on S. This may, if there is no risk for confusion with a measurable space, be written as (S, d).

Definition 3.6 (Converging sequence). Let (S, d) be a metric (or semimetric) space, a sequence $\left\{s_{n}\right\}$ in S is said to converge to $s \in S$ if for all $\varepsilon>0$ there exists N such that $\forall n \geq N d\left(s_{n}, s\right) \leq \varepsilon$. The point s is then said to be the limit point of $\left\{s_{n}\right\}$. In particular, if V is a normed linear space, $v \in V$ and $\left\{v_{n}\right\}$ is a sequence in V, then $\left\{v_{n}\right\}$ converges to v (with respect to the metric induced by the norm on V) if and only if $\lim _{n}\left\|v_{n}-v\right\|=0$. Note that if d is a semimetric $\left\{s_{n}\right\}$ may have several limit points.

Definition 3.7 (Dense subset). Let (S, d) be a metric (or semimetric) space, a subset $A \subseteq S$ is said to be dense in S if for all $s \in S$ and $\varepsilon>0$ there exists $a \in A$ such that $d(s, a)<\varepsilon$.

Definition 3.8 (Separable space). Let (S, d) be a metric (or semimetric) space, if S has a countable dense subset, S is separable.

Definition 3.9 (Cauchy sequences and completeness). Let (S, d) be a metric space, a Cauchy sequence is a sequence $\left\{s_{n}\right\}$ in S such that for all $\varepsilon>0$ there exists N such that for all $n, m \geq N, d\left(s_{n}, s_{m}\right)<\varepsilon$. A metric space (S, d) is said to be complete if all Cauchy sequences in (S, d) converge.

Definition 3.10 (Banach space). If a normed linear space is complete, with respect to the metric induced by the norm on the space, then it is called a Banach space.

Definition 3.11 (Inner product). Let V be a vector space over \mathbb{C}. A function $(\cdot, \cdot): V \times V \rightarrow$ \mathbb{C} is an inner product on V if
(a) $(x, x) \geq 0$,
(b) $(x, x)=0 \Longleftrightarrow x=0$,
(c) $(x, y)=\overline{(y, x)}$, and
(d) $(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$
hold for all $x, y, z \in V$ and $\alpha, \beta \in \mathbb{C}$. An inner product space is a vector space, together with an inner product. The norm $\|\cdot\|$ associated to the inner product (\cdot, \cdot) is defined by $\|x\|=\sqrt{(x, x)}$.

Definition 3.12 (Hilbert space). An inner product space that is complete under the norm associated with the inner product is called a Hilbert space.

$3.2 \mathscr{L}^{p}$ and L^{p}

Definition $3.13\left(\mathscr{L}^{p}\right)$. Let (X, \mathscr{A}, μ) be a measure space, and let $p \in[1, \infty)$. Then $\mathscr{L}^{p}(X, \mathscr{A}, \mu, \mathbb{R})$ is the set of all \mathscr{A}-measurable functions $f: X \rightarrow \mathbb{R}$ such that $|f|^{p}$ is integrable, and $\mathscr{L}^{p}(X, \mathscr{A}, \mu, \mathbb{C})$ is the set of \mathscr{A}-measurable functions $f: X \rightarrow \mathbb{C}$ such that $|f|^{p}$ is integrable.

Definition $3.14\left(\mathscr{L}^{\infty}\right)$. Let (X, \mathscr{A}, μ) be a measure space. We define $\mathscr{L}^{\infty}(X, \mathscr{A}, \mu, \mathbb{R})$ to be the set of all ${ }^{1}$ bounded real-valued \mathscr{A}-measurable functions, and $\mathscr{L}^{p}(X, \mathscr{A}, \mu, \mathbb{C})$ as the set of all bounded complex-valued \mathscr{A}-measurable functions.

Remark. Some authors ${ }^{2}$ define $\mathscr{L}^{\infty}(X, \mathscr{A}, \mu)$ as the set of all essentially bounded \mathscr{A} measurable functions on X. A function $f: X \rightarrow \mathbb{C}$ is essentially bounded if there exists $M>0$ such that $\{x \in X:|f(x)|>M\}$ is locally μ-null. For most purposes, it does not matter which definition of \mathscr{L}^{∞} one uses. However the study of liftings is convenient with Definition 3.14.

Definition 3.15 (Locally μ-null). Let (X, \mathscr{A}, μ) be a measure space. A subset $N \subseteq X$ is said to be locally μ-null if for each $A \in \mathscr{A}$ that satisfies $\mu(A)<\infty$ the set $A \cap N$ is μ-null. A property is said to hold locally almost everywhere if the set on which the property doesn't hold is locally μ-null.

Definition 3.16 (Seminorm on \mathscr{L}^{p}). In the case of $p \in[1, \infty)$ we define a seminorm $\|\cdot\|_{p}: \mathscr{L}^{p}(X, \mathscr{A}, \mu) \rightarrow \mathbb{R}$ by

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}
$$

In the case $p=\infty$ we define a seminorm $\|\cdot\|_{\infty}: \mathscr{L}^{\infty}(X, \mathscr{A}, \mu) \rightarrow \mathbb{R}$ by

$$
\|f\|_{\infty}=\inf \{M:\{x \in X:|f(x)|>M\} \text { is locally } \mu \text {-null }\}
$$

Definition $3.17\left(\mathscr{N}^{p}\right)$. Let (X, \mathscr{A}, μ) be a measure space, and let $\mathscr{N}^{p}(X, \mathscr{A}, \mu)$ be the subset of $\mathscr{L}^{p}(X, \mathscr{A}, \mu)$ which consists of the functions $f \in \mathscr{L}^{p}(X, \mathscr{A}, \mu)$ such that $\|f\|_{p}=0$. That is, if $p \in[1, \infty)$, then $\mathscr{N}^{p}(X, \mathscr{A}, \mu)$ is the set of functions in $\mathscr{L}^{p}(X, \mathscr{A}, \mu)$ which vanish almost everywhere, and if $p=\infty$ then $\mathscr{N}^{\infty}(X, \mathscr{A}, \mu)$ is the set of functions in $\mathscr{L}^{\infty}(X, \mathscr{A}, \mu)$ which vanish locally almost everywhere.

Definition $3.18\left(L^{p}\right)$. Let (X, \mathscr{A}, μ) be a measure space. We define $L^{p}(X, \mathscr{A}, \mu)$ to be the quotient group $\mathscr{L}^{p}(X, \mathscr{A}, \mu) / \mathscr{N}^{p}(X, \mathscr{A}, \mu)$. That is $L^{p}(X, \mathscr{A}, \mu)$ is the collection of cosets of

[^0]$\mathscr{N}^{p}(X, \mathscr{A}, \mu)$ in $\mathscr{L}^{p}(X, \mathscr{A}, \mu)$; these cosets are by definition the equivalence classes induced by the equivalence relation \sim, where $f \sim g$ holds if and only if $f-g \in \mathscr{N}^{p}(X, \mathscr{A}, \mu)$. Then if $p \in[1, \infty), f \sim g \Longleftrightarrow f=g$ almost everywhere.

Definition 3.19 (Norm on $\left.L^{p}\right)$. Let (X, \mathscr{A}, μ) be a measure space. For each $f \in \mathscr{L}^{p}(X, \mathscr{A}, \mu)$ let $\langle f\rangle$ be the coset of $\mathscr{N}^{p}(X, \mathscr{A}, \mu)$ in $\mathscr{L}^{p}(X, \mathscr{A}, \mu)$ to which f belongs. Then $L^{p}(X, \mathscr{A}, \mu)$ is a vector space and we can define a norm $\|\cdot\|_{p}: L^{p}(X, \mathscr{A}, \mu) \rightarrow \mathbb{R}$ by $\|\langle f\rangle\|_{p}=\|f\|_{p}$, where on the right hand side $\|\cdot\|_{p}: \mathscr{L}^{p}(X, \mathscr{A}, \mu) \rightarrow \mathbb{R}$ is given in Definition 3.16.

Definition 3.20 (Convergence in p th mean). Let (X, \mathscr{A}, μ) be a measure space, let $p \in$ $[1, \infty)$, and let $f, f_{1}, f_{2}, \cdots \in \mathscr{L}^{p}(X, \mathscr{A}, \mu)$. Then $\left\{f_{n}\right\}$ converges to f in pth mean, or in L^{p} norm, if $\lim _{n}\left\|f_{n}-f\right\|_{p}=0$.

3.3 Dual Spaces

Definition 3.21 (Linear operator). Let V_{1}, V_{2} be normed vector spaces over \mathbb{C} (or over \mathbb{R}), then a function $T: V_{1} \rightarrow V_{2}$ is a linear operator or linear transformation if $T(\alpha v)=\alpha T(v)$ and $T(u+v)=T(u)+T(v)$ hold for all $\alpha \in \mathbb{C}$ (or \mathbb{R}) and all $u, v \in V_{1}$.

Definition 3.22 (Bounded linear operator). Let V_{1}, V_{2} be normed vector spaces, and let $T: V_{1} \rightarrow V_{2}$ be linear. Then a nonnegative number A such that $\|T(v)\| \leq A\|v\|$ holds for every $v \in V_{1}$ is called a bound for T, and the operator T is called bounded if there is a bound for it.

Definition 3.23 (Norm of linear operator). Let $T: V_{1} \rightarrow V_{2}$ be a bounded linear operator, we define the norm of T by

$$
\|T\|=\inf \{A: A \text { is a bound for } T\}
$$

Then $\|\cdot\|$ is a norm on the vector space of bounded linear operators from V_{1} to V_{2}.
Definition 3.24 (Isometry). Let $T: V_{1} \rightarrow V_{2}$ be a linear operator between normed linear spaces. Then T is called and isometry if $\|T(v)\|=\|v\|$ for every $v \in V_{1}$.

Definition 3.25 (Isometric isomorphism). Let $T: V_{1} \rightarrow V_{2}$ be a linear operator between normed linear spaces. Then T is an isometric isomorphism if T is an isometry and is surjective. Because all isometries are injective, T is then bijective.

Definition 3.26 (Linear functional). Let V be a normed linear space. A linear functional on V is a linear operator on V whose values lie in \mathbb{C}, if V is a vector space over \mathbb{C}, or in \mathbb{R}, if V is a vector space over \mathbb{R}.

Definition 3.27 (Dual space). Let V be a normed linear space. The set of all bounded, and hence continuous, linear functionals on V then form a vector space. This vector space is called the dual space (or conjugate space) of V, and is denoted by V^{*}. Note that the function $\|\cdot\| V^{*} \rightarrow \mathbb{R}$ which assigns to each functional in V^{*} its norm, is in fact a norm on the vector space V^{*}.

4 Signed and Complex measures

Definition 4.1 (Signed measure). Let (X, \mathscr{A}) be a measurable space. A function $\mu: \mathscr{A} \rightarrow$ $[-\infty, \infty]$ is called a signed measure if it is countably additive and satisfies $\mu(\varnothing)=0$.

Definition 4.2 (Positive \& negative sets). Let μ be a signed measure on a measurable space (X, \mathscr{A}). A set $A \in \mathscr{A}$ is a positive set if every $B \in \mathscr{A}$ such that $B \subseteq A$ satisfies $\mu(B) \geq 0$. Likewise, a set $A \in \mathscr{A}$ is a negative set if every $B \in \mathscr{A}$ such that $B \subseteq A$ satisfies $\mu(B) \leq 0$.

Definition 4.3 (Hahn decomposition). A Hahn decomposition of a signed measure μ on the measurable space (X, \mathscr{A}) is a pair (P, N) of disjoint subsets in \mathscr{A} such that $X=P \cup N$, and P is a positive set and N is a negative set. Note that there may be several Hahn decomposition of the signed measure μ.

Definition 4.4 (Complex measure). Let (X, \mathscr{A}) be a measurable space. A complex measure is a function $\mu: \mathscr{A} \rightarrow \mathbb{C}$ that satisfies $\mu(\varnothing)=0$ and is countably additive. A complex measure μ can be written as $\mu=\mu^{\prime}+i \mu^{\prime \prime}$ where μ^{\prime} and $\mu^{\prime \prime}$ are finite signed measures.

Definition 4.5 (Jordan decomposition). Let μ be a signed measure on the measurable space (X, \mathscr{A}), and let (P, N) be a Hahn decomposition of μ. Let $\mu^{+}(A)=\mu(A \cap P)$ and $\mu^{-}(A)=-\mu(A \cap N)$, then μ^{+}, μ^{-}are measures on (X, \mathscr{A}) and $\mu=\mu^{+}-\mu^{-}$. The measures μ^{+}and μ^{-}are called the positive part and negative part of μ, respectively. The representation $\mu=\mu^{+}-\mu^{-}$is called the Jordan decomposition of the signed measure μ. If μ is a complex measure on (X, \mathscr{A}) then the representation $\mu=\mu_{1}-\mu_{2}+i\left(\mu_{3}-\mu_{4}\right)$ is called the Jordan decomposition of μ, if $\mu^{\prime}=\mu_{1}-\mu_{2}$ and $\mu^{\prime \prime}=\mu_{3}-\mu_{4}$ are the Jordan decompositions of the real and imaginary parts of μ.

Definition 4.6 (Variation). If μ is a signed measure on the measurable space (X, \mathscr{A}), then the variation of μ is defined to be $|\mu|=\mu^{+}+\mu^{-}$, and the total variation of μ is defined to be $\|\mu\|=|\mu|(X)$. If μ is a complex measure on (X, \mathscr{A}), then the variation of μ is defined by $|\mu|(A)=\sup \left\{\sum_{j=1}^{n}\left|\mu\left(A_{j}\right)\right|:\left\{A_{j}\right\}_{j=1}^{n}\right.$ are finite disjoint sequences in \mathscr{A} such that $\left.A=\bigcup_{j=1}^{n} A_{j}\right\}$. The total variation of μ is defined to be $\|\mu\|=|\mu|(X)$.

Definition 4.7. Let (X, \mathscr{A}) be a measurable space. Define $M(X, \mathscr{A}, \mathbb{R})$ as the set of all finite signed measures on (X, \mathscr{A}), and $M(X, \mathscr{A}, \mathbb{C})$ as the set of all complex measures on (X, \mathscr{A}). It is easy to see that $M(X, \mathscr{A}, \mathbb{R})$ and $M(X, \mathscr{A}, \mathbb{C})$ are vector spaces over \mathbb{R} and \mathbb{C} respectively, and that the total variation gives a norm on each of them.

Definition 4.8 (Integration with signed measure). Let X, \mathscr{A}) be a measurable space. Denote by $B(X, \mathscr{A}, \mathbb{R})$ the vector space of bounded real-valued \mathscr{A}-measurable functions on X.

If μ is a finite signed measure on (X, \mathscr{A}), and $\mu=\mu^{+}-\mu^{-}$is the Jordan decomposition of μ, and if $f \in B(X, \mathscr{A}, \mathbb{R})$, then the integral of f with respect to μ is defined as

$$
\int f d \mu=\int f d \mu^{+}-\int f d \mu^{-}
$$

Definition 4.9 (Integration with complex measure). Let X, \mathscr{A}) be a measurable space. Denote by $B(X, \mathscr{A}, \mathbb{C})$ the vector space of bounded complex-valued \mathscr{A}-measurable functions on X. If μ is a complex measure on (X, \mathscr{A}), and μ_{1}, μ_{2} are the real and imaginary parts of μ, and if $f \in B(X, \mathscr{A}, \mathbb{C})$, then the integral of f wuth respect ti μ is defined by

$$
\int f d \mu=\int f d \mu_{1}+i \int f d \mu_{2}
$$

Remark. The formula $f \mapsto \int f d \mu$ and $\mu \mapsto \int f d \mu$ define a linear functionals on $B(X, \mathscr{A})$ and $M(X, \mathscr{A})$ respectively.

Definition 4.10 (Absolute continuity). Let (X, \mathscr{A}) be a measureable space, and let μ and ν be measures on (X, \mathscr{A}). We say that ν is absolutely continuous with respect to μ if every $A \in \mathscr{A}$ such that $\mu(A)=0$ also satisfies $\nu(A)=0$. This is sometimes indicated as $\nu \ll \mu$. A measure ν on $\left(\mathbb{R}^{d}, \mathscr{B}\left(\mathbb{R}^{d}\right)\right)$ is called absolutely continuous if $\nu \ll \lambda$.

Definition 4.11 (Absolute continuity of signed or complex measure). Let (X, \mathscr{A}, μ) be a measure space. A signed or complex measure ν on (X, \mathscr{A}) is absolutely continuous with respect to μ, written $\nu \ll \mu$, if the variation $|\nu|$ is absolutely continuous with respect to μ.

Definition 4.12 (Radon-Nikodym derivative). Let (X, \mathscr{A}) be a measurable space, let μ be a σ-finite meaure on (X, \mathscr{A}) and let ν be a, finite signed, complex, or σ-finite, meaure on (X, \mathscr{A}) such that $\nu \ll \mu$. A function g such that $\nu(A)=\int_{A} g d \mu$ hold for every $A \in \mathscr{A}$ is called a Radon-Nikodym derivative of ν with respect to μ, or in light of the μ-almost uniqueness of such g, the Radon-Nikodym derivative of ν with respect to μ. The RadonNikodym derivative of ν is sometimes denoted $\frac{d \nu}{d \mu}$.

Definition 4.13 (Concentrated measure). Let (X, \mathscr{A}) be a measurable space, a measure μ is concentrated on $E \in \mathscr{A}$ if $\mu\left(E^{c}\right)=0$. A signed or complex measure μ is said to be concentrated on E if $|\mu|\left(E^{c}\right)=0$.

Definition 4.14 (Singularity). Let (X, \mathscr{A}) be a measurable space, let μ and ν be positive, signed, or complex measures on (X, \mathscr{A}). Then μ and ν are called mutually singular if there exists $E \in \mathscr{A}$ such that μ is concentrated on E and ν is concentrated on E^{c}. That two measures are mutually singular is sometimes denoted $\mu \perp \nu$. Sometimes the statement μ and ν are mutually singular is said, μ and ν are singular, μ is singular with respect to ν, or
that ν is singular with respect to μ. A positive, signed, or complex measure on $\left(\mathbb{R}^{d}, \mathscr{B}\left(\mathbb{R}^{d}\right)\right)$ is simply said to be singular if it is singular with respect to the d-dimensional Lebesgue measure on $\left(\mathbb{R}^{d}, \mathscr{B}\left(\mathbb{R}^{d}\right)\right)$.

Definition 4.15 (Lebesgue decomposition). Let (X, \mathscr{A}, μ) be a measure space, and let ν be a finite signed, complex, or σ-finite positive measure on (X, \mathscr{A}). There are unique finite signed, complex, or σ-finite measures ν_{a} and ν_{s} on (X, \mathscr{A}) that satisfy
(a) $\nu_{a} \ll \mu$,
(b) $\nu_{s} \perp \mu$, and
(c) $\nu=\nu_{a}+\nu_{s}$.

The decomposition $\nu=\nu_{a}+\nu_{s}$ is called the Lebesgue decomposition of ν.

5 Product Measures

Definition 5.1 (Product of σ-algebras). Let (X, \mathscr{A}) and (Y, \mathscr{B}) be measurable spaces. A subset of $X \times Y$ is called a rectangle with measurable sides if it has the form $A \times B$ for some $A \in \mathscr{A}$ and $B \in \mathscr{B}$. The σ-algebra on $X \times Y$ generated by collection of rectangles with measurable sides is called the product of \mathscr{A} and \mathscr{B}, and is denoted by $\mathscr{A} \times \mathscr{B}$.

Definition 5.2 (Product measure). Let (X, \mathscr{A}, μ) and (Y, \mathscr{B}, ν) be σ-finite measure spaces. The unique measure $\mu \times \nu$ on $\mathscr{A} \times \mathscr{B}$ which satisfies $(\mu \times \nu)(A \times B)=\mu(A) \nu(B)$, for every $A \in \mathscr{A}, B \in \mathscr{B}$, is called the product of μ and ν.

10 Probability

Definition 10.1 (Probability space). A probability space is a measure space (Ω, \mathscr{A}, P) such that $P(\Omega)=1$. The elements of Ω are called the elementary outcomes or the sample points of our experiment, and the members of \mathscr{A} are called events. If $A \in \mathscr{A}$, then $P(A)$ is the probability of the event A.

Definition 10.2 (Random variable). A real-valued random variable on a probability space (Ω, \mathscr{A}, P) is an \mathscr{A}-measurable function from Ω to \mathbb{R}. Such a variable represents a numerical observation or measurement whose value depends on the outcome of the random experiment represented by (Ω, \mathscr{A}, P). More generally, a random variable with values in a measurable space (S, \mathscr{B}) is a measurable function from (Ω, \mathscr{A}, P) to (S, \mathscr{B}).

Definition 10.3 (Distribution). Let X be a random variable with values in (S, \mathscr{B}). The the distribution of X is the measure $P X^{-1}$ (see Definition 2.11) defined on (S, \mathscr{B}) by $\left(P X^{-1}\right)(A)=P\left(X^{-1}(A)\right)$. We will often write P_{X} for the distribution of a random variable X. If X_{1}, \ldots, X_{d} are (S, \mathscr{B})-valued random variables on (Ω, \mathscr{A}, P), then the formula $X(\omega)=$ $\left(X_{1}\left(\omega, \ldots, X_{d}(\omega)\right)\right.$ defines an S^{d}-valued random variable X; the distribution of X is called the joint distribution of X_{1}, \ldots, X_{d}.

Definition 10.4 (Expected value). If a real-valued random variable on the probability space (Ω, \mathscr{A}, P) is integrable, then the expected value of X is defined $E(X)=\int X d P$. The expected value of X is often denoted μ_{X}.

Definition 10.5 (Variance). If X is a real-valued random variable, then the variance of X is the expected value of the random variable $(X-E(X))^{2}$, often denoted $\operatorname{Var}(X)$ or σ_{X}^{2}. The numerical value $\sqrt{\sigma_{X}^{2}}=\sigma_{X}$ is called the standard deviation of X.

Definition 10.6. If X is \mathbb{R}^{d} valued and $P_{X} \ll \lambda$, then the Radon-Nikodym derivative of $P_{X} f_{X}$, is called the density function of X.

Definition 10.7 (Independence). Let (Ω, \mathscr{A}, P) be a probability space, and led $\left\{A_{i}\right\}_{i \in I}$ be an indexed family of events in \mathscr{A}. The events A_{i} are called independent if for each finite subset I_{0} of I we have $P\left(\cap_{i \in I_{0}} A_{i}\right)=\prod_{i \in I_{0}} P\left(A_{i}\right)$. Let $\left\{X_{i}\right\}_{i \in I}$ be an indexed family of random variables defined on (Ω, \mathscr{A}, P) and with values in the measurable space (S, \mathscr{B}). The random variables X_{i} are aclled independent if for each choice of sets $A_{i} \in \mathscr{B}, i \in I$, the events $X_{i}^{-1}\left(A_{i}\right)$ are independent. Finally if $\{\mathscr{A}\}_{i \in I}$ is an indexed family of sub- σ-algebras of \mathscr{A}, then the σ-algebras \mathscr{A}_{i} are independent if for each choice $A_{i} \in \mathscr{A}_{i}$ the events A_{i} are independent.

[^0]: ${ }^{1}$ I think it's supposed to be almost everywhere bounded functions, otherwise exercise 3.3 .7 fails with this definition (however not with the alternative definition).
 ${ }^{2}$ Notably, the first edition of Cohn's Measure Theory uses this definition.

