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1 Measures

Definition 1.1 (Algebra). Let X be a set, an arbitrary collection of subsets A of X is an

algebra on X if

(a) X ∈ A ,

(b) if A ∈ A then Ac ∈ A ,

(c) for each finite sequence {An}Nn=1 of sets in A , the set
⋃N

n=1 An belongs to A , and

(d) for each finite sequence {An}Nn=1 of sets in A , the set
⋂N

n=1 An belongs to A .

Definition 1.2 (σ-Algebra). Let X be a set, an arbitrary collection of subsets A of X is a

σ-algebra on X if

(a) X ∈ A ,

(b) if A ∈ A then Ac ∈ A ,

(c) for each infinite sequence {An}∞n=1 of sets in A , the set
⋃∞

n=1 An belongs to A , and

(d) for each infinite sequence {An}∞n=1 of sets in A , the set
⋂∞

n=1 An belongs to A .

Definition 1.3 (Borel σ-algebra on Rd). The Borel σ-algebra on Rd, denoted B(Rd), is

generated by the collection of open subsets of Rd. Proposition 1.1.5 states that B(Rd) is

generated by each of the collections of sets

(a) the collection of all closed subsets of Rd;

(b) the collection of all closed half-spaces in Rd that have the form {(x1, . . . , xd) : xi ≤ b}
for some b ∈ R;

(c) the collection of all rectangles in Rd that have the form{
(x1, . . . , xd) : ai < xi ≤ bi for i = 1, . . . , d

}
.

Definition 1.4 (Measure). Let A be a σ-algebra. A function µ : A → [0,∞] is called

countably additive if

µ

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ(An),
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for each infinite sequence of disjoint sets {An}∞n=1 in A . If µ in addition to being countably

additive also satisfies µ(∅) = 0, µ is said to be a measure on A .

Definition 1.5 (Measure space). Let X be a set, A a σ-algebra on X and µ a measure on

A . The triplet (X,A , µ) is then called a measure space, the pair (X,A ) is often called a

measurable space.

Definition 1.6 (Outer measure). Let X be a set, and let P(X) be the power set of X. An

outer measure on X is a function µ∗ : P(X) → [0,∞] such that

(a) µ∗(∅) = 0,

(b) A ⊆ B ⊆ X implies µ∗(A) ≤ µ∗(B), and

(c) if {An} is an infinite sequence of sets in P(X), then µ∗ (
⋃
An) ≤

∑
µ∗(An).

Definition 1.7 (Lebesgue outer measure). Lebesgue outer measure on Rd which we denote

by λ∗ is defined as follows. For each set A ⊆ Rd define the set CA of all sequences {Rn} of

bounded and open d-cells Rn such that A ⊆
⋃∞

n=1 Rn. Then

λ∗(A) = inf

{
∞∑
n=1

vol(Rn) : {Rn} ∈ CA

}
.

Definition 1.8 (µ∗-measurable set). Let X be a set, and let µ∗ be an outer measure on X.

A subset B of X is µ∗-measurable if

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc),

for all A ⊆ X.

Definition 1.9 (Complete measure). Let (X,A , µ) be a measure space. The measure µ,

or the measure space (X,A , µ), is called complete if A ∈ A , µ(A) = 0, and B ⊆ A implies

B ∈ A .

Definition 1.10 (µ-negligible set). A subset B of X is called µ-negligible or µ-null if there

exists A ∈ A such that µ(A) = 0 and B ⊆ A. Thus (X,A , µ) is complete if and only if

every µ-negligible set belongs to A .

Definition 1.11 (Completion of a σ-algebra under a measure). Let (X,A ) be a measurable

space. The completion of A under µ is the collection Aµ of A ⊆ X for which there exists

E,F ∈ A such that

E ⊆ A ⊆ F,

and

µ(F \ E) = 0.
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A set that belongs to Aµ is sometimes said to be µ-measurable.

Definition 1.12 (Completion of a measure). Let (X,A , µ) be a measure space. The com-

pletion of µ is defined as µ : Aµ → [0,∞] by letting µ(A) be the common value of E,F ,

defined in the above definition.

Definition 1.13 (Inner and outer measure). Let (X,A , µ) be a measure space, and let A

be an arbitrary subset of X. The inner measure µ∗ of A is defined by

µ∗(A) = sup {µ(B) : B ⊆ A and B ∈ A } .

The outer measure µ∗ of A meanwhile, is defined by

µ∗(A) = inf {µ(B) : A ⊆ B and B ∈ A } .

Remark. According to Proposition 1.5.4, the outer measure defined in Definition 1.13

satisfies the conditions placed on an outer measure in Definition 1.6.

Definition 1.14 (Regular measure). Let A be a σ-algebra on Rd that includes B(Rd). A

measure µ on A is regular if

(a) each compact subset K of Rd satisfies µ(K) < ∞,

(b) each set A in A satisfies

µ(A) = inf {µ(U) : U is open andA ⊆ U} , and

(c) each open subset U of Rd satisfies

µ(U) = sup {µ(K) : K is compact andK ⊆ A} .

Definition 1.15 (Dykin class). Let X be a set. A collection D is a d-system, or Dykin class,

on X if

(a) X ∈ D ,

(b) A \B ∈ D whenever A,B ∈ D and A ⊇ B, and

(c)
⋃

An ∈ D whenever {An} is an increasing sequence of sets in D .

Definition 1.16 (π-system). A collection of subsets of X is a π-system if it is closed under

the formation of finite unions.
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2 Functions and Integrals

Definition 2.1 (A -measurable function). Let (X,A ) be a measurable space, and letA ∈ A .

A function f : A → [−∞,∞] is measurable with respect to A if it satisfies any of the

conditions, and thus all, of the conditions in Proposition 2.1.1. That is any of

(a) ∀t ∈ R {x ∈ A : f(x) ≤ t} ∈ A ,

(b) ∀t ∈ R {x ∈ A : f(x) < t} ∈ A ,

(c) ∀t ∈ R {x ∈ A : f(x) ≥ t} ∈ A ,

(d) ∀t ∈ R {x ∈ A : f(x) > t} ∈ A .

A function that is measurable with respect to A may be called A -measurable or if what

σ-algebra is meant is obvious from context, simply measurable. In the case X = Rd functions

measurable with respect to B(Rd) are called Borel measurable or Borel functions. A function

measurable with respect to Mλ∗ is called Lebesgue measurable.

Definition 2.2 (Almost everywhere). Let (X,A , µ) be a measure space. A property of

points on X is said to hold µ-almost everywhere if the set of points in X where it fails to

hold is µ-negligible. The expression µ-almost everywhere is often abbreviated µ-a.e. or to

a.e.[µ]. If the measure is clear from context one may simply say almost everywhere.

2.1 Construction of the integral

Definition 2.3 (Integral of a simple non-negative function). Let µ be a measure on (X,A ).

If f is a real-valued, simple, A -measurable function given by f =
∑m

i=1 aiχAi
, where each

ai ≥ 0 and Ai ∈ A are disjoint. Then the integral of f with respect to µ is then defined to

be ∫
f dµ =

m∑
n=1

aiµ(Ai).

Definition 2.4 (Integral of arbitrary A -measurable, non-negative function). Let f be an

arbitrary A -measurable function, with image in [0,∞]. The integral of f is then defined as∫
f dµ = sup

{∫
g dµ : g ∈ S+ and g ≤ f

}
.

Definition 2.5 (Integral of arbitrary measurable function). Let f : X → [−∞,∞] be a

measurable function on (X,A , µ). If
∫
f+ dµ and

∫
f− dµ are both finite, then f is called

integrable and its integral is defined by∫
f dµ =

∫
f+ dµ−

∫
f− dµ.
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The integral of f is said to exist if at least one of
∫
f+ dµ and

∫
f− dµ is finite, in this case

the integral is defined
∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Definition 2.6 (Integral over a subset). Let (X,A , µ) be a measure space, and let f : X →
[−∞,∞] be A -measurable. The integral of f over a subset A ⊆ X is said to exist if the

integral of fχA exists. In that case the integral over A is defined to be∫
A

f dµ =

∫
fχA dµ.

Likewise, if A ∈ A and f : A → [−∞,∞] is A -measurable, then the integral of f over A is

defined to be the integral of the function which agrees with f on A and vanishes on Ac.

Definition 2.7 (Lebesgue integral). The case X = Rd and µ = λ we simply talk about

Lebesgue integrability and the Lebesgue integral. We may use any of the following notations

for the Lebesgue integral over an interval [a, b]∫ b

a

f =

∫ b

a

f(x) dx = (L)

∫ b

a

f = (L)

∫ b

a

f(x) dx,

where the latter two are used to emphasise that we are talking about the Lebesgue integral.

Definition 2.8 (L 1). We define L 1(X,A , µ,R), or sometimes simply L 1, as the set of all

integrable functions f : X → R. (As opposed to [−∞,∞]-valued functions.)

2.2 Measurable functions again

Definition 2.9 (Measurable function between sets). Let (X,A ) and (Y,B) be measurable

spaces. A function f : X → Y is measurable with respect to A and B if for each B ∈ B the

set f−1(B) belongs to A . In stead of saying measurable with respect to A and B, we may say

that f is a measurable function from (X,A ) to (Y,B), or simply that f : (X,A ) → (Y,B)

is measurable.

Definition 2.10 (Integral of complex-valued function). Let (X,A , µ) be a measure space.

A complex-valued function f on X is integrable if its real and imaginary parts ℜ(f) and

ℑ(f) are integrable; if f is integrable then its integral is defined by∫
f dµ =

∫
ℜ(f) dµ+ i

∫
ℑ(f) dµ.

Definition 2.11 (µf−1). Let (X,A , µ) be a measure space, let (Y,B) be a measurable

space, and let f : (X,A ) → (Y,B) be measurable.Define µf−1 : B → [0,∞] by µf−1(B) =

µ(f−1(B)). It is easy to show that µf−1 is a measure, this measure is sometimes called the

image of µ under f .
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3 Convergence

Definition 3.1 (Convergence in measure). Let (X,A , µ) be a measure space, and let f and

f1, f2, . . . be real valued A -measurable functions on X. The sequence {fn} converges to f

in measure if

lim
n

µ ({x ∈ X : |fn(x)− fn| > ε}) = 0

for every ε > 0.

Definition 3.2 (Almost uniform convergence). Let (X,A , µ) be a measure space, and let f

and f1, f2, . . . be real valued A -measurable functions on X. Then {fn} converges to f almost

uniformly if for all ε > 0 there is B ∈ A such that {fn} converges to f on B and µ(Bc) < ε.

Definition 3.3 (Convergence in mean). Let (X,A , µ) be a measure space, and let f and

f1, f2, . . . be real valued A -measurable functions on X. Then {fn} converges to f in mean

if

lim
n

∫
|fn − f | dµ = 0.

3.1 Normed spaces

Definition 3.4 (Norm & seminorm). Let V be a vector space over C. A norm on V is a

function ∥·∥ : V → R that satisfies

(a) ∥v∥ ≥ 0,

(b) ∥v∥ = 0 ⇐⇒ v = 0,

(c) ∥αv∥ = |α| ∥v∥,

(d) ∥u+ v∥ ≤ ∥u∥+ ∥v∥

for each u, v ∈ V and α ∈ C. If condition (b) was replaced by ”∥v∥ = 0 ⇐= v = 0” ∥·∥ is a

seminorm.

Definition 3.5 (Metric & semimetric). A metric on a set S is a function d : S × S → R
that satisfies

(a) d(s, t) ≥ 0,

(b) d(s, t) = 0 ⇐⇒ s = t,

(c) d(s, t) = d(t, s),

(d) d(r, t) ≤ d(r, s) + d(s, t)
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for all r, s, t ∈ S. If condition (b) is replaced by ”d(s, t) = 0 ⇐= s = t” d is a semimetric.

A metric space is a set S together with a metric d on S. This may, if there is no risk for

confusion with a measurable space, be written as (S, d).

Definition 3.6 (Converging sequence). Let (S, d) be a metric (or semimetric) space, a

sequence {sn} in S is said to converge to s ∈ S if for all ε > 0 there exists N such that

∀n ≥ N d(sn, s) ≤ ε. The point s is then said to be the limit point of {sn}. In particular,

if V is a normed linear space, v ∈ V and {vn} is a sequence in V , then {vn} converges to

v (with respect to the metric induced by the norm on V ) if and only if limn ∥vn − v∥ = 0.

Note that if d is a semimetric {sn} may have several limit points.

Definition 3.7 (Dense subset). Let (S, d) be a metric (or semimetric) space, a subset A ⊆ S

is said to be dense in S if for all s ∈ S and ε > 0 there exists a ∈ A such that d(s, a) < ε.

Definition 3.8 (Separable space). Let (S, d) be a metric (or semimetric) space, if S has a

countable dense subset, S is separable.

Definition 3.9 (Cauchy sequences and completeness). Let (S, d) be a metric space, a Cauchy

sequence is a sequence {sn} in S such that for all ε > 0 there exists N such that for all

n,m ≥ N , d(sn, sm) < ε. A metric space (S, d) is said to be complete if all Cauchy sequences

in (S, d) converge.

Definition 3.10 (Banach space). If a normed linear space is complete, with respect to the

metric induced by the norm on the space, then it is called a Banach space.

Definition 3.11 (Inner product). Let V be a vector space over C. A function (·, ·) : V ×V →
C is an inner product on V if

(a) (x, x) ≥ 0,

(b) (x, x) = 0 ⇐⇒ x = 0,

(c) (x, y) = (y, x), and

(d) (αx+ βy, z) = α(x, z) + β(y, z)

hold for all x, y, z ∈ V and α, β ∈ C. An inner product space is a vector space, together

with an inner product. The norm ∥·∥ associated to the inner product (·, ·) is defined by

∥x∥ =
√
(x, x).

Definition 3.12 (Hilbert space). An inner product space that is complete under the norm

associated with the inner product is called a Hilbert space.
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3.2 L p and Lp

Definition 3.13 (L p). Let (X,A , µ) be a measure space, and let p ∈ [1,∞). Then

L p(X,A , µ,R) is the set of all A -measurable functions f : X → R such that |f |p is

integrable, and L p(X,A , µ,C) is the set of A -measurable functions f : X → C such that

|f |p is integrable.

Definition 3.14 (L ∞). Let (X,A , µ) be a measure space. We define L ∞(X,A , µ,R) to
be the set of all1 bounded real-valued A -measurable functions, and L p(X,A , µ,C) as the
set of all bounded complex-valued A -measurable functions.

Remark. Some authors2 define L ∞(X,A , µ) as the set of all essentially bounded A -

measurable functions on X. A function f : X → C is essentially bounded if there exists

M > 0 such that {x ∈ X : |f(x)| > M} is locally µ-null. For most purposes, it does not

matter which definition of L ∞ one uses. However the study of liftings is convenient with

Definition 3.14.

Definition 3.15 (Locally µ-null). Let (X,A , µ) be a measure space. A subset N ⊆ X is

said to be locally µ-null if for each A ∈ A that satisfies µ(A) < ∞ the set A ∩N is µ-null.

A property is said to hold locally almost everywhere if the set on which the property doesn’t

hold is locally µ-null.

Definition 3.16 (Seminorm on L p). In the case of p ∈ [1,∞) we define a seminorm

∥·∥p : L p(X,A , µ) → R by

∥f∥p =
(∫

|f |p dµ
)1/p

.

In the case p = ∞ we define a seminorm ∥·∥∞ : L ∞(X,A , µ) → R by

∥f∥∞ = inf
{
M : {x ∈ X : |f(x)| > M} is locally µ-null

}
.

Definition 3.17 (N p). Let (X,A , µ) be a measure space, and let N p(X,A , µ) be the

subset of L p(X,A , µ) which consists of the functions f ∈ L p(X,A , µ) such that ∥f∥p = 0.

That is, if p ∈ [1,∞), then N p(X,A , µ) is the set of functions in L p(X,A , µ) which vanish

almost everywhere, and if p = ∞ then N ∞(X,A , µ) is the set of functions in L ∞(X,A , µ)

which vanish locally almost everywhere.

Definition 3.18 (Lp). Let (X,A , µ) be a measure space. We define Lp(X,A , µ) to be the

quotient group L p(X,A , µ)/N p(X,A , µ). That is Lp(X,A , µ) is the collection of cosets of

1I think it’s supposed to be almost everywhere bounded functions, otherwise exercise 3.3.7 fails with this
definition (however not with the alternative definition).

2Notably, the first edition of Cohn’s Measure Theory uses this definition.
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N p(X,A , µ) in L p(X,A , µ); these cosets are by definition the equivalence classes induced

by the equivalence relation ∼, where f ∼ g holds if and only if f − g ∈ N p(X,A , µ). Then

if p ∈ [1,∞), f ∼ g ⇐⇒ f = g almost everywhere.

Definition 3.19 (Norm on Lp). Let (X,A , µ) be a measure space. For each f ∈ L p(X,A , µ)

let ⟨f⟩ be the coset of N p(X,A , µ) in L p(X,A , µ) to which f belongs. Then Lp(X,A , µ)

is a vector space and we can define a norm ∥·∥p : Lp(X,A , µ) → R by ∥⟨f⟩∥p = ∥f∥p, where
on the right hand side ∥·∥p : L p(X,A , µ) → R is given in Definition 3.16.

Definition 3.20 (Convergence in pth mean). Let (X,A , µ) be a measure space, let p ∈
[1,∞), and let f, f1, f2, · · · ∈ L p(X,A , µ). Then {fn} converges to f in pth mean, or in Lp

norm, if limn ∥fn − f∥p = 0.

3.3 Dual Spaces

Definition 3.21 (Linear operator). Let V1, V2 be normed vector spaces over C (or over R),
then a function T : V1 → V2 is a linear operator or linear transformation if T (αv) = αT (v)

and T (u+ v) = T (u) + T (v) hold for all α ∈ C (or R) and all u, v ∈ V1.

Definition 3.22 (Bounded linear operator). Let V1, V2 be normed vector spaces, and let

T : V1 → V2 be linear. Then a nonnegative number A such that ∥T (v)∥ ≤ A ∥v∥ holds for

every v ∈ V1 is called a bound for T , and the operator T is called bounded if there is a bound

for it.

Definition 3.23 (Norm of linear operator). Let T : V1 → V2 be a bounded linear operator,

we define the norm of T by

∥T∥ = inf{A : A is a bound for T}.

Then ∥·∥ is a norm on the vector space of bounded linear operators from V1 to V2.

Definition 3.24 (Isometry). Let T : V1 → V2 be a linear operator between normed linear

spaces. Then T is called and isometry if ∥T (v)∥ = ∥v∥ for every v ∈ V1.

Definition 3.25 (Isometric isomorphism). Let T : V1 → V2 be a linear operator between

normed linear spaces. Then T is an isometric isomorphism if T is an isometry and is

surjective. Because all isometries are injective, T is then bijective.

Definition 3.26 (Linear functional). Let V be a normed linear space. A linear functional

on V is a linear operator on V whose values lie in C, if V is a vector space over C, or in R,
if V is a vector space over R.
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Definition 3.27 (Dual space). Let V be a normed linear space. The set of all bounded,

and hence continuous, linear functionals on V then form a vector space. This vector space is

called the dual space (or conjugate space) of V , and is denoted by V ∗. Note that the function

∥·∥ V ∗ → R which assigns to each functional in V ∗ its norm, is in fact a norm on the vector

space V ∗.

10



4 Signed and Complex measures

Definition 4.1 (Signed measure). Let (X,A ) be a measurable space. A function µ : A →
[−∞,∞] is called a signed measure if it is countably additive and satisfies µ(∅) = 0.

Definition 4.2 (Positive & negative sets). Let µ be a signed measure on a measurable space

(X,A ). A set A ∈ A is a positive set if every B ∈ A such that B ⊆ A satisfies µ(B) ≥ 0.

Likewise, a set A ∈ A is a negative set if every B ∈ A such that B ⊆ A satisfies µ(B) ≤ 0.

Definition 4.3 (Hahn decomposition). A Hahn decomposition of a signed measure µ on the

measurable space (X,A ) is a pair (P,N) of disjoint subsets in A such that X = P ∪ N ,

and P is a positive set and N is a negative set. Note that there may be several Hahn

decomposition of the signed measure µ.

Definition 4.4 (Complex measure). Let (X,A ) be a measurable space. A complex measure

is a function µ : A → C that satisfies µ(∅) = 0 and is countably additive. A complex

measure µ can be written as µ = µ′ + iµ′′ where µ′ and µ′′ are finite signed measures.

Definition 4.5 (Jordan decomposition). Let µ be a signed measure on the measurable

space (X,A ), and let (P,N) be a Hahn decomposition of µ. Let µ+(A) = µ(A ∩ P ) and

µ−(A) = −µ(A∩N), then µ+, µ− are measures on (X,A ) and µ = µ+ − µ−. The measures

µ+ and µ− are called the positive part and negative part of µ, respectively. The representation

µ = µ+ − µ− is called the Jordan decomposition of the signed measure µ. If µ is a complex

measure on (X,A ) then the representation µ = µ1 − µ2 + i(µ3 − µ4) is called the Jordan

decomposition of µ, if µ′ = µ1 − µ2 and µ′′ = µ3 − µ4 are the Jordan decompositions of the

real and imaginary parts of µ.

Definition 4.6 (Variation). If µ is a signed measure on the measurable space (X,A ), then

the variation of µ is defined to be |µ| = µ+ + µ−, and the total variation of µ is defined to

be ∥µ∥ = |µ|(X). If µ is a complex measure on (X,A ), then the variation of µ is defined by

|µ|(A) = sup

{
n∑

j=1

|µ(Aj)| : {Aj}nj=1 are finite disjoint sequences in A such that A =
n⋃

j=1

Aj

}
.

The total variation of µ is defined to be ∥µ∥ = |µ|(X).

Definition 4.7. Let (X,A ) be a measurable space. Define M(X,A ,R) as the set of all

finite signed measures on (X,A ), and M(X,A ,C) as the set of all complex measures on

(X,A ). It is easy to see that M(X,A ,R) and M(X,A ,C) are vector spaces over R and C
respectively, and that the total variation gives a norm on each of them.

Definition 4.8 (Integration with signed measure). Let X,A ) be a measurable space. De-

note by B(X,A ,R) the vector space of bounded real-valued A -measurable functions on X.

11



If µ is a finite signed measure on (X,A ), and µ = µ+ − µ− is the Jordan decomposition of

µ, and if f ∈ B(X,A ,R), then the integral of f with respect to µ is defined as∫
f dµ =

∫
f dµ+ −

∫
f dµ−.

Definition 4.9 (Integration with complex measure). Let X,A ) be a measurable space.

Denote by B(X,A ,C) the vector space of bounded complex-valued A -measurable functions

on X. If µ is a complex measure on (X,A ), and µ1, µ2 are the real and imaginary parts of

µ, and if f ∈ B(X,A ,C), then the integral of f wuth respect ti µ is defined by∫
f dµ =

∫
f dµ1 + i

∫
f dµ2.

Remark. The formula f 7→
∫
f dµ and µ 7→

∫
f dµ define a linear functionals on B(X,A )

and M(X,A ) respectively.

Definition 4.10 (Absolute continuity). Let (X,A ) be a measureable space, and let µ and

ν be measures on (X,A ). We say that ν is absolutely continuous with respect to µ if every

A ∈ A such that µ(A) = 0 also satisfies ν(A) = 0. This is sometimes indicated as ν ≪ µ.

A measure ν on (Rd,B(Rd)) is called absolutely continuous if ν ≪ λ.

Definition 4.11 (Absolute continuity of signed or complex measure). Let (X,A , µ) be a

measure space. A signed or complex measure ν on (X,A ) is absolutely continuous with

respect to µ, written ν ≪ µ, if the variation |ν| is absolutely continuous with respect to µ.

Definition 4.12 (Radon-Nikodym derivative). Let (X,A ) be a measurable space, let µ be

a σ-finite meaure on (X,A ) and let ν be a, finite signed, complex, or σ-finite, meaure on

(X,A ) such that ν ≪ µ. A function g such that ν(A) =
∫
A
g dµ hold for every A ∈ A

is called a Radon-Nikodym derivative of ν with respect to µ, or in light of the µ-almost

uniqueness of such g, the Radon-Nikodym derivative of ν with respect to µ. The Radon-

Nikodym derivative of ν is sometimes denoted dν
dµ
.

Definition 4.13 (Concentrated measure). Let (X,A ) be a measurable space, a measure

µ is concentrated on E ∈ A if µ(Ec) = 0. A signed or complex measure µ is said to be

concentrated on E if |µ|(Ec) = 0.

Definition 4.14 (Singularity). Let (X,A ) be a measurable space, let µ and ν be positive,

signed, or complex measures on (X,A ). Then µ and ν are called mutually singular if there

exists E ∈ A such that µ is concentrated on E and ν is concentrated on Ec. That two

measures are mutually singular is sometimes denoted µ ⊥ ν. Sometimes the statement µ

and ν are mutually singular is said, µ and ν are singular, µ is singular with respect to ν, or

12



that ν is singular with respect to µ. A positive, signed, or complex measure on (Rd,B(Rd))

is simply said to be singular if it is singular with respect to the d-dimensional Lebesgue

measure on (Rd,B(Rd)).

Definition 4.15 (Lebesgue decomposition). Let (X,A , µ) be a measure space, and let ν

be a finite signed, complex, or σ-finite positive measure on (X,A ). There are unique finite

signed, complex, or σ-finite measures νa and νs on (X,A ) that satisfy

(a) νa ≪ µ,

(b) νs ⊥ µ, and

(c) ν = νa + νs.

The decomposition ν = νa + νs is called the Lebesgue decomposition of ν.
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5 Product Measures

Definition 5.1 (Product of σ-algebras). Let (X,A ) and (Y,B) be measurable spaces. A

subset of X ×Y is called a rectangle with measurable sides if it has the form A×B for some

A ∈ A and B ∈ B. The σ-algebra on X × Y generated by collection of rectangles with

measurable sides is called the product of A and B, and is denoted by A × B.

Definition 5.2 (Product measure). Let (X,A , µ) and (Y,B, ν) be σ-finite measure spaces.

The unique measure µ× ν on A ×B which satisfies (µ× ν)(A×B) = µ(A)ν(B), for every

A ∈ A , B ∈ B, is called the product of µ and ν.
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10 Probability

Definition 10.1 (Probability space). A probability space is a measure space (Ω,A , P ) such

that P (Ω) = 1. The elements of Ω are called the elementary outcomes or the sample points

of our experiment, and the members of A are called events. If A ∈ A , then P (A) is the

probability of the event A.

Definition 10.2 (Random variable). A real-valued random variable on a probability space

(Ω,A , P ) is an A -measurable function from Ω to R. Such a variable represents a numerical

observation or measurement whose value depends on the outcome of the random experiment

represented by (Ω,A , P ). More generally, a random variable with values in a measurable

space (S,B) is a measurable function from (Ω,A , P ) to (S,B).

Definition 10.3 (Distribution). Let X be a random variable with values in (S,B). The

the distribution of X is the measure PX−1 (see Definition 2.11) defined on (S,B) by

(PX−1)(A) = P (X−1(A)). We will often write PX for the distribution of a random variable

X. If X1, . . . , Xd are (S,B)-valued random variables on (Ω,A , P ), then the formula X(ω) =

(X1(ω, . . . , Xd(ω)) defines an Sd-valued random variable X; the distribution of X is called

the joint distribution of X1, . . . , Xd.

Definition 10.4 (Expected value). If a real-valued random variable on the probability

space (Ω,A , P ) is integrable, then the expected value of X is defined E(X) =
∫
X dP . The

expected value of X is often denoted µX .

Definition 10.5 (Variance). If X is a real-valued random variable, then the variance of X

is the expected value of the random variable (X − E(X))2, often denoted Var(X) or σ2
X .

The numerical value
√

σ2
X = σX is called the standard deviation of X.

Definition 10.6. If X is Rd valued and PX ≪ λ, then the Radon-Nikodym derivative of

PX fX , is called the density function of X.

Definition 10.7 (Independence). Let (Ω,A , P ) be a probability space, and led {Ai}i∈I be

an indexed family of events in A . The events Ai are called independent if for each finite

subset I0 of I we have P (∩i∈I0Ai) =
∏

i∈I0 P (Ai). Let {Xi}i∈I be an indexed family of

random variables defined on (Ω,A , P ) and with values in the measurable space (S,B). The

random variables Xi are aclled independent if for each choice of sets Ai ∈ B, i ∈ I, the

events X−1
i (Ai) are independent. Finally if {A }i∈I is an indexed family of sub-σ-algebras

of A , then the σ-algebras Ai are independent if for each choice Ai ∈ Ai the events Ai are

independent.
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